Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Existing approaches see CNNs excel at modeling local textures, while Transformers excel at capturing global context. However, efficiently integrating them remains a bottleneck due to the high computational cost of Transformers. To tackle this, we propose AFM-Net, a novel Advanced Hierarchical Fusing framework that achieves effective local and global co-representation through two pathways: a CNN branch for extracting hierarchical visual priors, and a Mamba branch for efficient global sequence modeling. The core innovation of AFM-Net lies in its Hierarchical Fusion Mechanism, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a Mixture-of-Experts classifier module, which dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that AFM-Net obtains 93.72, 95.54, and 96.92 percent accuracy, surpassing state-of-the-art methods with balanced performance and efficiency. Code is available at https://github.com/tangyuanhao-qhu/AFM-Net.
Hyperspectral imaging (HSI) is a vital tool for fine-grained land-use and land-cover (LULC) mapping. However, the inherent heterogeneity of HSI data has long posed a major barrier to developing generalized models via joint training. Although HSI foundation models have shown promise for different downstream tasks, the existing approaches typically overlook the critical guiding role of sensor meta-attributes, and struggle with multi-sensor training, limiting their transferability. To address these challenges, we propose SpecAware, which is a novel hyperspectral spectral-content aware foundation model for unifying multi-sensor learning for HSI mapping. We also constructed the Hyper-400K dataset to facilitate this research, which is a new large-scale, high-quality benchmark dataset with over 400k image patches from diverse airborne AVIRIS sensors. The core of SpecAware is a two-step hypernetwork-driven encoding process for HSI data. Firstly, we designed a meta-content aware module to generate a unique conditional input for each HSI patch, tailored to each spectral band of every sample by fusing the sensor meta-attributes and its own image content. Secondly, we designed the HyperEmbedding module, where a sample-conditioned hypernetwork dynamically generates a pair of matrix factors for channel-wise encoding, consisting of adaptive spatial pattern extraction and latent semantic feature re-projection. Thus, SpecAware gains the ability to perceive and interpret spatial-spectral features across diverse scenes and sensors. This, in turn, allows SpecAware to adaptively process a variable number of spectral channels, establishing a unified framework for joint pre-training. Extensive experiments on six datasets demonstrate that SpecAware can learn superior feature representations, excelling in land-cover semantic segmentation classification, change detection, and scene classification.
The presence of occlusions has provided substantial challenges to typically-powerful object recognition algorithms. Additional sources of information can be extremely valuable to reduce errors caused by occlusions. Scene context is known to aid in object recognition in biological vision. In this work, we attempt to add robustness into existing Region Proposal Network-Deep Convolutional Neural Network (RPN-DCNN) object detection networks through two distinct scene-based information fusion techniques. We present one algorithm under each methodology: the first operates prior to prediction, selecting a custom object network to use based on the identified background scene, and the second operates after detection, fusing scene knowledge into initial object scores output by the RPN. We demonstrate our algorithms on challenging datasets featuring partial occlusions, which show overall improvement in both recall and precision against baseline methods. In addition, our experiments contrast multiple training methodologies for occlusion handling, finding that training on a combination of both occluded and unoccluded images demonstrates an improvement over the others. Our method is interpretable and can easily be adapted to other datasets, offering many future directions for research and practical applications.
Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.




Remote Sensing Vision-Language Models (RSVLMs) have shown remarkable potential thanks to large-scale pretraining, achieving strong zero-shot performance on various tasks. However, their ability to generalize in low-data regimes, such as few-shot learning, remains insufficiently explored. In this work, we present the first structured benchmark for evaluating few-shot adaptation methods on RSVLMs. We conduct comprehensive experiments across ten remote sensing scene classification datasets, applying five widely used few-shot adaptation strategies to three state-of-the-art RSVLMs with varying backbones. Our findings reveal that models with similar zero-shot performance can exhibit markedly different behavior under few-shot adaptation, with some RSVLMs being inherently more amenable to such adaptation than others. The variability of performance and the absence of a clear winner among existing methods highlight the need for the development of more robust methods for few-shot adaptation tailored to RS. To facilitate future research, we provide a reproducible benchmarking framework and open-source code to systematically evaluate RSVLMs under few-shot conditions. The source code is publicly available on Github: https://github.com/elkhouryk/fewshot_RSVLMs
Synchronizing videos captured simultaneously from multiple cameras in the same scene is often easy and typically requires only simple time shifts. However, synchronizing videos from different scenes or, more recently, generative AI videos, poses a far more complex challenge due to diverse subjects, backgrounds, and nonlinear temporal misalignment. We propose Temporal Prototype Learning (TPL), a prototype-based framework that constructs a shared, compact 1D representation from high-dimensional embeddings extracted by any of various pretrained models. TPL robustly aligns videos by learning a unified prototype sequence that anchors key action phases, thereby avoiding exhaustive pairwise matching. Our experiments show that TPL improves synchronization accuracy, efficiency, and robustness across diverse datasets, including fine-grained frame retrieval and phase classification tasks. Importantly, TPL is the first approach to mitigate synchronization issues in multiple generative AI videos depicting the same action. Our code and a new multiple video synchronization dataset are available at https://bgu-cs-vil.github.io/TPL/




Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.
Object tags denote concrete entities and are central to many computer vision tasks, whereas abstract tags capture higher-level information, which is relevant for tasks that require a contextual, potentially subjective scene understanding. Object and abstract tags extracted from images also facilitate interpretability. In this paper, we explore which type of tags is more suitable for the context-dependent and inherently subjective task of image privacy. While object tags are generally used for privacy classification, we show that abstract tags are more effective when the tag budget is limited. Conversely, when a larger number of tags per image is available, object-related information is as useful. We believe that these findings will guide future research in developing more accurate image privacy classifiers, informed by the role of tag types and quantity.
Advances in portability and low cost of plenoptic cameras have revived interest in light field imaging. Light-field imaging has evolved into a technology that enables us to capture richer visual information. This high-dimensional representation of visual data provides a powerful way to understand the scene, with remarkable improvement in traditional computer vision problems such as depth sensing , post-capture refocusing , material classification, segmentation, and video stabilization. Capturing light fields with high spatial-angular resolution and capturing light field video at high frame rates remains a major challenge due to the limited resolution of the sensors, with limited processing speed. In this paper, we presented an extensive literature review of light field acquisition techniques, challenges associated with different capturing methodology and algorithms proposed for light-field super-resolution, in order to deal with spatial-angular resolution trade-off issue.
Vision-transformers (ViTs) and large-scale convolution-neural-networks (CNNs) have reshaped computer vision through pretrained feature representations that enable strong transfer learning for diverse tasks. However, their efficiency as backbone architectures for geometric estimation tasks involving image deformations in low-data regimes remains an open question. This work considers two such tasks: 1) estimating 2D rigid transformations between pairs of images and 2) predicting the fundamental matrix for stereo image pairs, an important problem in various applications, such as autonomous mobility, robotics, and 3D scene reconstruction. Addressing this intriguing question, this work systematically compares large-scale CNNs (ResNet, EfficientNet, CLIP-ResNet) with ViT-based foundation models (CLIP-ViT variants and DINO) in various data size settings, including few-shot scenarios. These pretrained models are optimized for classification or contrastive learning, encouraging them to focus mostly on high-level semantics. The considered tasks require balancing local and global features differently, challenging the straightforward adoption of these models as the backbone. Empirical comparative analysis shows that, similar to training from scratch, ViTs outperform CNNs during refinement in large downstream-data scenarios. However, in small data scenarios, the inductive bias and smaller capacity of CNNs improve their performance, allowing them to match that of a ViT. Moreover, ViTs exhibit stronger generalization in cross-domain evaluation where the data distribution changes. These results emphasize the importance of carefully selecting model architectures for refinement, motivating future research towards hybrid architectures that balance local and global representations.